Bayesian Simulation Optimization Using Augmented Probability Simulation

نویسنده

  • Jason R. W. Merrick
چکیده

Under the subject expected utility paradigm, decisions are made by finding the alternative with the maximum expected utility. In Bayesian simulation, the probability distribution used is the distribution of a simulation output. While methods have been developed under the Bayesian paradigm for choosing the best simulated system from a discrete, finite set of alternatives, the only methods for optimization with Bayesian simulations are borrowed from classical simulation and deterministic optimization. This paper presents an algorithm for finding the decision with the maximum expected utility, based on a sampling technique, called augmented probability sampling. The algorithm is particularly appealing as both the decision and the simulation outputs are handled using sampling techniques derived from the Metropolis sampler, which is commonly used in Bayesian estimation. (Simulation optimization; Bayesian statistics; Markov chain Monte Carlo)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Local Search for Bayesian Networks

The paper evaluates empirically the suitability of Stochastic Local Search algorithms (SLS) for nding most probable explanations in Bayesian networks. SLS algorithms (e.g., GSAT, WSAT [16]) have recently proven to be highly e ective in solving complex constraint-satisfaction and satis ability problems which cannot be solved by traditional search schemes. Our experiments investigate the applicab...

متن کامل

Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...

متن کامل

Augmented Markov Chain Monte Carlo Simulation for Two-Stage Stochastic Programs with Recourse

In this paper, we develop a simulation-based approach for two-stage stochastic programs with recourse. We construct an augmented probability model with stochastic shocks and decision variables. Simulating from the augmented probability model solves for the expected recourse function and the optimal first-stage decision. Markov chain Monte Carlo methods, together with ergodic averaging, provide ...

متن کامل

RELIABILITY–BASED DESIGN OPTIMIZATION OF CONCRETE GRAVITY DAMS USING SUBSET SIMULATION

The paper deals with the reliability–based design optimization (RBDO) of concrete gravity dams subjected to earthquake load using subset simulation. The optimization problem is formulated such that the optimal shape of concrete gravity dam described by a number of variables is found by minimizing the total cost of concrete gravity dam for the given target reliability. In order to achieve this p...

متن کامل

Simulation Optimization : New Approaches and an Application

Title of dissertation: SIMULATION OPTIMIZATION: NEW APPROACHES AND AN APPLICATION Huashuai Qu, Doctor of Philosophy, 2014 Dissertation directed by: Professor Michael C. Fu Department of Decision, Operations, and Information Technologies Simulation models are commonly used to provide analysis and prediction of the behavior of complex stochastic systems. Simulation optimization integrates optimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009